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Abstract. A group analysis of a class of drift–diffusion systems is performed. In account of
the presence of arbitrary constitutive functions, we look for Lie symmetries starting from the
weak equivalence transformations. Applications to the transport of charges in semiconductors are
presented and a special class of solutions is given for particular doping profiles.

1. Introduction

In this paper we tackle the problem of finding symmetries of the classS of drift–diffusion
systems of partial differential equations (PDEs), which arise in several problems of physical
(e.g. semiconductors) or biological (e.g. evolution of tumours) interest

u1
x1 = [p1u1

x2 − p2u1]x2 (1)

u2
x2 = u1− p3 (2)

where

p1 = p1(u1) p2 = p2(u2) p3 = p3(x2) (3)

are sufficiently smooth arbitrary functions of their arguments. A special subclass of this system
was previously considered by the authors in [1].

The search for symmetries is usually performed via the direct Lie approach [2–6]. This
procedure requires the solution of the so-calleddeterminingsystem, which is an overdetermined
system of PDEs, linear in the components of the infinitesimal generators. However, since in (1),
(2), the functions, nota priori assigned,p1, p2 andp3 appear, the computational difficulties
considerably increase and it is too involved to get the complete symmetry classification
by the Lie direct method. Therefore, it is convenient to proceed to look forequivalence
transformationsor weak equivalence transformationsas in [7–12] where the problem of
symmetry classification in the presence of arbitrary functions has been considered for different
physical models.

Roughly speaking, an equivalence transformation (see section 2 for a more formal
definition) is a change of variables which transforms the original system of PDEs into a new
system having the same differential structure, but in which the transformed arbitrary functions
might have a different form even if they continue to depend on the same arguments.
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Instead, a weak equivalence transformation (WET) can also change the arguments of the
transformed functions: e.g.,p1(u1) can be transformed intop1(xi, uj ).

The use of equivalence transformations for finding symmetries [7,8] is based on the fact
that, from their infinitesimal generators, one gets, under suitable hypothesis, the infinitesimal
generators of the Lie symmetries by projection. The same strategy is followed when WETs
are employed [9–12] but this latter procedure, as shown in [1, 9–12], usually gives a wider
set of symmetries. A procedure based on equivalence or WETs does not, in general,
ensure determination of the complete symmetry classification, but in applications it reveals a
successful and computationally appealing way to obtain symmetries.

With respect to the aforesaid papers, we suggest an improved method for finding WETs.
Following [13, 14], we shall include the dependence on the arbitrary elements in all the
components of the generator by generalizing the method proposed in [2].

As an application of the results of the classification we shall get reduced systems for the
drift–diffusion model (DDM) of semiconductors and a class of exact solutions will also be
presented.

The plan of the paper is as follows. In section 2 we recall the concept of weak equivalence
transformation and illustrate an infinitesimal method to obtain them. In section 3 we look for
weak equivalence transformations for the class of drift–diffusion systems under consideration.
In section 4 Lie symmetries are obtained by projection of the WETs and, in section 5, some
applications to the DDM of semiconductors are presented. Finally, in the appendix, the general
formulae for the prolongations of arbitrary order of the infinitesimal generators of equivalence
transformations are obtained.

2. On the equivalence transformations and their infinitesimal generators

We recall that a continuous equivalence transformation (CET) [2] for the system (1), (2) is a
transformation of the type†

xi = xi(xj , uβ, pB) (4)

uα = uα(xj , uβ, pB) (5)

pA = pA(xj , uβ, pB) (6)

which is locally aC∞-diffeomorphism and changes the original system into a new system
having the same differential structure but a different form of the arbitrary functionspA, that
is, in general,

p1(u1) 6= p1(u1) p2(u2) 6= p2(u2) p3(x2) 6= p3(x2).

A continuous invariant transformation can be regarded as a particular CET such that

p1(u1) = p1(u1) p2(u2) = p2(u2) p3(x2) = p3(x2).

Therefore, the continuous invariant transformations are a subset of the set of the equivalence
transformations.

The direct search for the equivalence transformations through the finite form of the
transformation encounters considerable computational difficulties. A way to overcome these
problems was indicated by Ovsiannikov [2] who suggested using the Lie infinitesimal criterion,
giving an algorithm to find the infinitesimal generators of the CETs. The original method of [2]

† The Latin indices run from one to the number of independent variables (i = 1, 2), the Greek indices run from one
to the number of dependent variables (β = 1, 2) and the capital Latin letters run from one to the number of arbitrary
functions (A = 1, 2, 3).
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was employed in several papers (see [15,16] and references therein). Recently, a generalization
has been presented in [13,14].

In the basic augmented spaceA = X × U × P , where {(x1, x2)} = X ⊆ R2,
{(u1, u2)} = U ⊆ R2 and{(p1, p2, p3)} = P ⊆ R3, let us consider a one-parameter group
of transformations

xi = xi(xj , uβ, pB, ε) (7)

uα = uα(xj , uβ, pB, ε) (8)

pA = pA(xj , uβ, pB, ε) (9)

which is locally aC∞-diffeomorphism, depends analytically on the parameterε in a
neighbourhood ofε = 0 and reduces to the identity transformation forε = 0.

The infinitesimal generator of the transformation (7)–(9) has the form

0 = ξ i∂xi + ηα∂uα +µA∂pA. (10)

Following [13], we consider bothξ i , ηα andµA as functions ofxi , uα andpA. In the previous
papers the same procedure was followed but the dependence onpA was assumed only forµA

while the componentsξ i andηα of 0 were sought as functions ofxi anduα alone according
to [2].

In order to make the notation as compact as possible, we put

za := (xi, uα) and νa := (ξ i, ηα)
and write0 as

0 = νa∂za +µA∂pA.

Since the systems belonging to the classS involve second-order derivatives, we need the first
and second prolongation0(1) and0(2) of 0.

The general expression of0(1) has been given in [13]. For the transformation (7)–(9) in
thefirst-order jet space[3]

A(1) = A× A1 = A× {(uαxj , pAxj , pBuk )}
we have

0(1) = 0 + ζ αj ∂uαj + ωAa ∂pAa (11)

where

uαi = uαxi and pAa = pAza
ζ αj = De

jη
α − uαkDe

j ξ
k (12)

ωAa = D̃e
aµ

A − pAb D̃e
aν
b (13)

with

De
j = ∂xj + uαj ∂uα + (pAuαu

α
j + pAxj )∂pA (14)

D̃e
a = ∂za + pAa ∂pA. (15)

We have generalized this result to prolongations of0 of arbitrary order. For the sake of clarity
we report such a generalization in the appendix. Here we only need the prolongation

0∗ = 0(1) + ζ αij ∂uαij (16)

where

ζ αij = De
jζ

α
i − uαikDe

j ξ
k
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where0∗ is the specialization of0(2) (see the appendix) to our case.
In order to take into account the functional dependences (3) in searching for the equivalence

transformation, as indicated in [2], we have to impose the invariance of the system (1), (2) and,
moreover, the invariance of the additional relations

p1
xi = 0 p1

u2 = 0 p2
xi = 0 p2

u1 = 0 p3
uα = 0 p3

x1 = 0 (17)

under the action of the generator0∗, that is

0∗(u1
x1 − [p1u1

x2 − p2u1]x2)|(1);(2);(17) = 0 (18)

0∗(u2
x2 − u1 + p3)|(1);(2);(17) = 0 (19)

(0∗p1
xi )|(1);(2);(17) = 0 (0∗p1

u2)|(1);(2);(17) = 0, (20)

(0∗p2
xi )|(1);(2);(17) = 0 (0∗p2

u1)|(1);(2);(17) = 0 (21)

(0∗p3
uα )|(1);(2);(17) = 0 (0∗p3

x1)|(1);(2);(17) = 0 (22)

where, as usual, the subscripts mean that the previous conditions must be evaluated by taking
into account the relations (1), (2), (17).

If the invariance of the conditions (17) is not required, that is if only the conditions

0∗(u1
x1 − [p1u1

x2 − p2u1]x2)|(1);(2) = 0 (23)

0∗(u2
x2 − u1 + p3)|(1);(2) = 0 (24)

are considered, one gets continuous transformations under which the transformed system
maintains the same differential structure but the transformedpA may depend on the other
dependent and independent variables (e.g.,p1 may also depend onxi andu2).

We shall call the equivalence transformations obtained without imposing the additional
conditions (20)–(22), WETs [12] for the system (1), (2) with the functional dependences (3).

3. Weak equivalence classification

As previously noticed, on account of the presence of the arbitrary functionspA, to classify,
following [2], the symmetry groups of the system (1), (2) is rather tedious even if symbolic
manipulation packages are used, so we will follow a different approach which makes use of the
WETs. First we look for aweak equivalence classification; that is, following [12], we classify
in the augmented spacẽA = {(x1, x2, u1, u2, p2)} the functional forms ofp1 := α(u1) and
p3 := γ (x2) for which the system admits WETs. Then, by a suitable projection method [12],
Lie symmetry infinitesimal generators are obtained from those of the WETs.

Therefore, we will seek the WETs of the system

u1
x1 = (α(u1)u2

x2)x2 − u1
x2p − u1pu2u2

x2 (25)

u2
x2 = u1− γ (x2) (26)

where the only arbitrary functionp2, denoted now byp, is assumed (because we are looking
for WETs) to depend onxj anduα(xk).

The generator in the appropriate second-orderjet space

Ã(2) = Ã× Ã1× Ã2 = Ã× {(uαxj , pxj , puβ )} × {(uαxixj , pxixj , puαxj , puαuβ )}
explicitly reads

0 = ξ i∂xi + ηα∂uα +µ∂p (27)

where the coordinatesξ i , ηα andµ are sought depending onxk, uα andp.
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Table 1. Weak equivalence classification. The infinitesimal generators appearing in the table are
given by01 = ∂x1,02 = ∂x2−Cu1∂u1−Cu2∂u2,03 = C

k1
x1∂x1 +∂x2−Cu1∂u1−Cu2∂u2− C

k1
p∂p ,

0B = B(x1)∂u2, 0D = D(x1)∂x2 +D′(x1)∂p , whereB(x1) andD(x1) are arbitrary functions of
x1.

α(u1) γ (x2) Infinitesimal generators

arbitrary arbitrary 01, 0B
arbitrary γ0 = constant 01, 0B , 0D
α0 = constant γ0 exp(−Cx2) 01, 0B , 02

k̃(k1u
1)1/k1, k1 6= 0 γ0 exp(−Cx2) 01, 0B , 03

The invariance conditions

0∗(u1
x1 − (α(u1)u2

x2)x2 + u1
x2p + u1pu2u2

x2)|(25);(26) = 0 (28)

0∗(u2 − u1 + γ (x2))|(25),(26) = 0 (29)

lead to the system

ξ2
x2 − η2

u1 = 0 (30)

η2
u2(u

1− γ (x2)) + η2
x2 − η1 + γ ′(x2)ξ2 = 0 (31)

α′′(u1)η1 + α′(u1)η1
u1 − (α

′(u1))2

α(u1)
η1 = 0 (32)

µ = 2α(u1)η1
u1x2 − pξ2

x2 + 2α′(u1)η1
x2 + p

α′(u1)

α(u1)
η1 + ξ2

x1 − α(u1)ξ2
x2x2 (33)

2ξ2
x2 = ξ1

x1 +
α′(u1)

α(u1)
η1 (34)

u1η2
x2 + u1(γ (x2)− u1)

(
α′(u1)

α(u1)
η1− 2ξ2

x2 + η1
u1 − µp

)
+ η1(u1− γ (x2)) = 0 (35)

pη1
x2 − u1(γ (x2)− u1)µp − α(u1)η1

x2x2 + η1
x1 = 0 (36)

for the functions

ξ1 = ξ1(x1) ξ2 = ξ2(x1, x2) η1 = η1(x1, x2, u1)

η2 = η2(x1, x2, u1, u2) µ = µ(x1, x2, u1, u2, p).

From the analysis of the previous system the classes of weak equivalence arise. We summarize
them in table 1.

Note that a similar classification could also be performed with respect to only one of
the pA. In general, the choice of the functions to be classified depends on computational
convenience or on physical considerations.

4. Lie symmetries via WETs

Starting from the weak equivalence classes found in the previous section, after observing that
the componentsξ i andηα of the infinitesimal WET generator do not depend onp, one can
obtain Lie point symmetries of the system (1), (2) by using the procedure introduced in [12],
based on the following theorem.

Theorem 1. Let

0 = ξ i(xk, uβ)∂xi + ηα(xk, uβ)∂uα +µ(xk, uβ, p)∂p
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Table 2. Symmetries obtained via WET. The infinitesimal generators appearing in the table

are defined asX1 = ∂x1, X2 = ∂x2, X3 = Cx1

k1
∂x1 + ∂x2 − Cu1∂u1 − Cu2∂u2, X4 =

∂x2 − Cu1∂u1 − Cu2∂u2,XB = B(x1)∂u2 andXD = D(x1)∂x2 + D′(t)
φ1
∂u2.

α(u1) γ (x2) φ(u2) Symmetry generators

arbitrary arbitrary arbitrary X1

arbitrary arbitrary φ0 X1,XB
arbitrary γ0 arbitrary X1,X2

arbitrary γ0 φ0 X1,X2,XB
arbitrary γ0 φ1u

2 + φ0, φ1 6= 0 X1,XD
α0 γ0 exp(−Cx2) φ0 X1,XB ,X3

k̃(k1u
1)1/k1 γ0 exp(−Cx2) φ0(u

2 + r)1/k1 X1,X3

be an infinitesimal generator of a WET for the system (1), (2). The projection of0

X = ξ i(xk, uβ)∂xi + ηα(xk, uβ)∂uα

in the(xi, uα)-space is an infinitesimal symmetry generator if and only if the specializations
of the functionp are invariant with respect to0.

Thus, according to the above theorem, we require the invariance of the additional restriction

p = φ(u2) (37)

under the action of the general infinitesimal generator0, which leads to

0(p − φ(u2))p=φ(u2) = 0 (38)

that is

µp − φ′(u2)η2 = 0. (39)

Specializing0 for each equivalence class, we get the symmetry classification.
Let us consider, as an example, the class characterized byα(u1) andγ (x2) arbitrary.

Since, in this case (see table 1),0 = c1∂x1 +B(x1)∂x2, the condition (39) reads

φ′(u2)B(x1) = 0

which gives the following two cases.

Case 1.φ(u2) arbitrary function. The symmetry infinitesimal generator is

X = c1∂x1 = c1X1 (40)

with c1 arbitrary constant.

Case 2.φ(u2) = φ0 = constant. The symmetry infinitesimal generator is

X = c1∂x1 +B(x1)∂u2 (41)

with B(x1) arbitrary function. The symmetry Lie algebra is infinite-dimensional and it is
spanned by

X1 and XB = B(x1)∂u2.

The other cases can be analysed in a similar way. We summarize the results of the
symmetry classification obtained from the WETs in table 2.
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Remark 1. The principal Lie algebraLP of the symmetry group, that is the algebra of the
symmetry group admitted for each functional form of the arbitrary functionsα(u1), γ (x2) and
φ(u2), is generated byX1, the time translation.

Remark 2. If the search for symmetries is performed via CETs [2, 13] one obtains fewer
symmetries than those obtained by using the WETs. In fact, as shown in [1], in the case
γ = constant, by employing the CETs only the caseB = constant is recovered and the
corresponding symmetry Lie algebra becomes finite-dimensional.

5. A class of solutions in cases of physical interest

In this section we apply the results of the previous sections by considering a case of particular
physical interest described by means of a system of PDEs of the type (1), (2): the DDM for
the charge transport in semiconductors.

The DDM, obtained starting from the transport equation for electrons in a semiconductor
crystal lattice by means of a Hilbert expansion, is represented by the balance equation for the
charge density, coupled with the Poisson equation for the electric potential (see [17–19]).

In the unipolar version (only the motion of the electrons is considered while the motion
of the holes is neglected) it reads

∂tn = ∂x(α∂xn− nv(E)) (42)

∂xE = n− γ (x) (43)

with n, v, E andγ (x) representing the scaled electron number density, velocity, electric field
and doping profile, respectively.

Usually equation (43) is substituted by the equation for the electric potential, but for one-
dimensional problems the algebra is simplified by considering the equation for the electric
field.

The diffusion coefficientα may depend onn andE. In this paper we assume thatα
depends only onn. The general case will be considered in a forthcoming paper.

The previous system falls into the class (1), (2) settingx1 = t , x2 = x, u1 = n and
u2 = E.

In order to close the system (42), (43), a relation betweenv andE must be assigned. This
depends on the type of semiconductor and it is obtained on the basis of asymptotic expansions
or fittings of experimental data or Monte Carlo simulations. In figure 1 we show the typical
behaviour of the velocity versus the electric field for Si and GaAs.

Here we shall restrict ourselves to the case

φ = φ1E + φ0 α = constant γ = constant.

A comparison with figure 1 shows that such a relation is a good approximation for a low electric
field.

For this choice ofφ,α andγ the symmetries of the resulting system (42), (43) are generated
byX1 andXD. The caseD(x1) = constant leads to invariant solutions of the form of travelling
waves, which have been analysed to study the Gunn effects in GaAs semiconductors [18].

Here we shall consider the caseD(x1) 6= 0. Without loss of generality, the scaled doping
is put equal to one and we denote the length of the device byl.

We look for solutions which are invariant with respect to

X = c1∂t +D(t)∂x +
D′(t)
φ1

∂E.
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Figure 1. Drift velocity versus electric field in arbitrary units for silicon (Si) and gallium arsenide
(GaAs).

From the characteristic equations

dt

c1
= dx

D(t)
= φ1 dE

D′(t)
the invariant basis of the symmetry group is obtained:

I1 = R(t)− c1x

I2 = n
I3 = E − R

′(t)
c1φ1

with R(t) = ∫ D(t) dt .
Then the invariant solutions have the form

n = U(σ)
E = R′(t)

c1φ1
+ V (σ).

whereσ := I1.
After substituting into the system (42), (43), we get thereducedsystem

αc1U
′′ + φ1U

′V + φ0U
′ + φ1V

′U = 0 (44)

−c1V
′ = U − 1 (45)

where primes denote derivatives with respect toσ .
Equation (44) has the first integral

αc1U
′ + φ1UV + φ0U = k0 = constant.

Then, by using equation (45), a single second-order differential equation is obtained:

αc2
1V
′′ + (1− c1V

′)(φ1V + φ0) = k0.
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By introducing the transformation

W = φ1V + φ0

and by settingc1 = 1, one gets

αW ′′ +WW ′ − φ1(W + k0) = 0. (46)

Fork0 = 0, the general solution of (46) is given in an implicit form:

σ − σ0 =
∫ n(σ)

n(σ0)

[
φ1 + φ1L

(
1

φ1
exp(

2φ1− τ 2 + 2c)

2φ1

)]−1

dτ (47)

wherec is an arbitrary constant andL is the Lambert function, implicitly defined by

L(ζ ) exp(L(ζ )) = ζ.
Note that the previous solution solves the system (42), (43) with the following boundary

conditions depending on an arbitrary function of time:

n(0, t) = U(R(t)) n(l, t) = U(R(t)− l) E(0, t) = R(t) + V (R(t)).

6. Conclusions

In this paper Lie symmetries for a class of a drift–diffusion system have been found by
following a different procedure from the direct Lie infinitesimal method. Even if this approach
does not guarantee obtaining complete symmetry classification, it provides a systematic way
for obtaining wide classes of symmetries when arbitrary functions appear and the Lie direct
infinitesimal criterion becomes too involved to be successfully applied.

The followed method is based on the weak equivalence classification already introduced
in [10–12]. Here we improve the results of those papers by generalizing the suggestion
presented in [13, 14], where all the coordinates of the infinitesimal generators were sought
depending also on the arbitrary functions. The corresponding prolongation formulae of any
order are given in the appendix.

Finally, as an application of the results of the classification, a class of solutions in the case
of charge transport in semiconductors is obtained. We stress that the functional form of the
invariant base allows us to deal with boundary conditions containing an arbitrary function of
time.
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Appendix. Prolongation formulae for equivalence transformations

Let us consider the transformation (7)–(9).
In order to get the prolongation formulae of the infinitesimal generators of arbitrary order

0(n) = 0(n−1) + ζ αi1...in∂uαi1...in + ωAa1...an
∂pAa1...an+4

(48)
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related to such a transformation in then-order augmented jet space

A(n) = A× A1× · · · × An
we consider separately the components of0 relative to the partial derivatives of the dependent
functionsuαj and the components of0 relative to the partial derivatives of the arbitrary functions
pAa .

Firstly, in order to determine the componentsζ αi1...in , the variablesuα andpA are sought as

uα = uα(xj ) and pA = pA(xj , uβ(xk)).
Therefore, from the transformation (7)–(9) it follows that

xj = xj (xi).
If we denote the total derivative with respect toxj byDe

j , and the total derivative with respect

to xj byD
e

j , from the transformation rule

De
ju
α = (De

jx
k)(D

e

ku
α)

and the infinitesimal form of the transformations (7)–(9)

xk = xk + εξk(xi, uβ, pA) + o(ε)

uα = uα + εηα(xi, uβ, pA) + o(ε)

uαj = uαj + εζ αj (x
i, uβ, pA) + o(ε)

formula (12) is easly obtained.
More generally, by induction the recursive relations are proved by the standard procedure:

ζ αi1...in = De
in
ζ αi1...in−1

− uαi1...in−1k
De
in
ξ k. (49)

Now, in order to find the componentsωAa ∂pAa , we considerxk anduα as independent functions
and thepA are sought as

pA = pA(xk, uβ).
Therefore, from the transformations (7)–(9)

za = za(zb).
By considering the relation

D̃ap
A = (D̃e

az
b)pA

zb

and by taking into account the infinitesimal form of the transformations for the partial
derivatives ofpA,

pAa1...an
= pAa1...an

+ εωAa1...an
+ o(ε)

we get formula (13).
Proceeding by induction we suppose that

ωAa1...an−1
= D̃e

an−1
(ωAa1...an−2

)− pAa1...an−2b
D̃e
an−1
νb.

Then, from the relation

D̃e
an
pAa1...an−1

= (D̃e
an
zb)pA

za1 ...zan−1z
b

written for the corresponding infinitesimal transformation

D̃e
an
(pAa1...an−1

+ εωAa1...an−1
+ o(ε)) = (D̃e

an
(zb + ενb + o(ε)))(pAa1...an−1b

+ εωAa1...an−1b
+ o(ε))

it follows that

ωAa1...an
= D̃e

an
(ωAa1...an−1

)− pAa1...an−1b
D̃e
an
νb. (50)

We summarize the previous results in the following theorem.
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Theorem 2. Let us consider the equivalence transformation (7)–(9). The prolongation of
order n of0 is given by (48) withζ αi1...in andωAa1...an

given by (49) and (50).

The prolongation formulae obtained above trivially extend to transformations with an
arbitrary number of dependent and independent variables and arbitrary functions.
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