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Abstract. A group analysis of a class of drift—diffusion systems is performed. In account of
the presence of arbitrary constitutive functions, we look for Lie symmetries starting from the
weak equivalence transformation&pplications to the transport of charges in semiconductors are

presented and a special class of solutions is given for particular doping profiles.

1. Introduction

In this paper we tackle the problem of finding symmetries of the ckae$ drift—diffusion
systems of partial differential equations (PDES), which arise in several problems of physical
(e.g. semiconductors) or biological (e.g. evolution of tumours) interest

Llil = [pll/li-z - pzl/tl]XZ (1)

u?, = u — p° 2
where

pt=ptwh p® = p*wd pd=p3(x? ©)

are sufficiently smooth arbitrary functions of their arguments. A special subclass of this system
was previously considered by the authors in [1].

The search for symmetries is usually performed via the direct Lie approach [2—6]. This
procedure requires the solution of the so-catleterminingystem, which is an overdetermined
system of PDEs, linear in the components of the infinitesimal generators. However, sincein (1),
(2), the functions, noa priori assignedp?, p? and p°® appear, the computational difficulties
considerably increase and it is too involved to get the complete symmetry classification
by the Lie direct method. Therefore, it is convenient to proceed to looleduivalence
transformationsor weak equivalence transformatio@s in [7—12] where the problem of
symmetry classification in the presence of arbitrary functions has been considered for different
physical models.

Roughly speaking, an equivalence transformation (see section 2 for a more formal
definition) is a change of variables which transforms the original system of PDEs into a new
system having the same differential structure, but in which the transformed arbitrary functions
might have a different form even if they continue to depend on the same arguments.
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Instead, a weak equivalence transformation (WET) can also change the arguments of the
transformed functions: e.gpl(x') can be transformed intﬁ(%i, ).

The use of equivalence transformations for finding symmetries [7, 8] is based on the fact
that, from their infinitesimal generators, one gets, under suitable hypothesis, the infinitesimal
generators of the Lie symmetries by projection. The same strategy is followed when WETs
are employed [9—-12] but this latter procedure, as shown in [1,9-12], usually gives a wider
set of symmetries. A procedure based on equivalence or WETs does not, in general,
ensure determination of the complete symmetry classification, but in applications it reveals a
successful and computationally appealing way to obtain symmetries.

With respect to the aforesaid papers, we suggest an improved method for finding WETSs.
Following [13, 14], we shall include the dependence on the arbitrary elements in all the
components of the generator by generalizing the method proposed in [2].

As an application of the results of the classification we shall get reduced systems for the
drift—diffusion model (DDM) of semiconductors and a class of exact solutions will also be
presented.

The plan of the paper is as follows. In section 2 we recall the concept of weak equivalence
transformation and illustrate an infinitesimal method to obtain them. In section 3 we look for
weak equivalence transformations for the class of drift—diffusion systems under consideration.
In section 4 Lie symmetries are obtained by projection of the WETSs and, in section 5, some
applications to the DDM of semiconductors are presented. Finally, in the appendix, the general
formulae for the prolongations of arbitrary order of the infinitesimal generators of equivalence
transformations are obtained.

2. On the equivalence transformations and their infinitesimal generators

We recall that a continuous equivalence transformation (CET) [2] for the system (1), (2) is a
transformation of the typet

x'=x'x,u, p?) 4)
u® = u*(x,u?, p*) (5)
pt = pA &, uf, p*) (6)

which is locally aCc*-diffeomorphism and changes the original system into a new system
having the same differential structure but a different form of the arbitrary funcpdnshat
is, in general,

pr@h £ pt@h  PR@) # pP@)  PUED) # pPED.
A continuous invariant transformation can be regarded as a particular CET such that
pi@h =prah  PrE) = pr@d)  PE) = pPEd).
Therefore, the continuous invariant transformations are a subset of the set of the equivalence
transformations.
The direct search for the equivalence transformations through the finite form of the
transformation encounters considerable computational difficulties. A way to overcome these

problems was indicated by Ovsiannikov [2] who suggested using the Lie infinitesimal criterion,
giving an algorithm to find the infinitesimal generators of the CETs. The original method of [2]

T The Latin indices run from one to the number of independent variablesl( 2), the Greek indices run from one
to the number of dependent variabl@s= 1, 2) and the capital Latin letters run from one to the number of arbitrary
functions @4 = 1, 2, 3).
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was employed in several papers (see [15,16] and references therein). Recently, a generalization
has been presented in [13, 14].
In the basic augmented spacé = X x U x P, where{(x!,x?)} = X € R?
{(wt, u?)} = U € R? and{(pt, p?, p®)} = P C R3, let us consider a one-parameter group
of transformations

x! :xi(fj,ﬁﬂ,ﬁB,a) 7
u® =u*x,uf, p?e) )]
pt=p*a . %) 9)

which is locally a C*-diffeomorphism, depends analytically on the parametein a
neighbourhood of = 0 and reduces to the identity transformationdos 0.
The infinitesimal generator of the transformation (7)—(9) has the form

T =£0, + 0% + upn. (10)

Following [13], we consider botk’, n* andu” as functions ok’, u® andp“. In the previous
papers the same procedure was followed but the dependenctwas assumed only fqr4
while the components’ andn® of I were sought as functions of andu® alone according
to [2].

In order to make the notation as compact as possible, we put

%= (x', u) and v = (&', 1%
and writel” as
T =" + 19,

Since the systems belonging to the cl@savolve second-order derivatives, we need the first
and second prolongatidin® andI'® of T".

The general expression BfY has been given in [13]. For the transformation (7)—(9) in
thefirst-order jet spacg3]

AV = A x Ay = A x {u®, pd, pE)}

we have

P® =T +780,0 + w0, 11
where

ut = u* and  p?=pi

¢ = DS — uj DsE* (12)

wlt = ﬁjMA — pff)va (13)
with

DS = 8y + uSd0 + (it + p)o, (14)

D¢ = 8.+ pla. (15)

We have generalized this result to prolongationE of arbitrary order. For the sake of clarity
we report such a generalization in the appendix. Here we only need the prolongation

r“=r®+ ;;;aulu; (16)
where
Q‘tj‘ = Djfia - ”?kD;Sk
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wherel™ is the specialization of @ (see the appendix) to our case.

Inordertotake into accountthe functional dependences (3) in searching for the equivalence
transformation, as indicated in [2], we have to impose the invariance of the system (1), (2) and,
moreover, the invariance of the additional relations

pi=0  po=0  pi=0  ph=0  pL=0  pi=0 (17)
under the action of the generafof, that is
I* @l — [ptul — pPu'l)l@:@:an =0 (18)
F*(Mfz —ut+ p¥ w209 =0 (19)
T*p)la:@:an =0 T2y @:an = 0, (20)
T*p?)l@:@:an =0 (T* P2y @,an =0 (21)
(T*pid)lwi@zan =0 (C* P2l @:an =0 (22)

where, as usual, the subscripts mean that the previous conditions must be evaluated by taking
into account the relations (1), (2), (17).
If the invariance of the conditions (17) is not required, that is if only the conditions

I (up — [p'ul — pPu'l)l@:@ =0 (23)

M*@?, —u'+ p¥laye =0 (24)
are considered, one gets continuous transformations under which the transformed system
maintains the same differential structure but the transforrpédnlay depend on the other
dependent and independent variables (§¢.may also depend ofi andu?).

We shall call the equivalence transformations obtained without imposing the additional
conditions (20)—(22), WETs [12] for the system (1), (2) with the functional dependences (3).

3. Weak equivalence classification

As previously noticed, on account of the presence of the arbitrary functiénso classify,
following [2], the symmetry groups of the system (1), (2) is rather tedious even if symbolic
manipulation packages are used, so we will follow a different approach which makes use of the
WETSs. First we look for aveak equivalence classificatiahat is, following [12], we classify
in the augmented space = {(x1, x2, u®, 42, p?)} the functional forms op! := «(u?) and
p® := y(x?) for which the system admits WETs. Then, by a suitable projection method [12],
Lie symmetry infinitesimal generators are obtained from those of the WETSs.

Therefore, we will seek the WETSs of the system

ui-l = (a(ul)ujch)xz - Mizp - ulpuzu)zc? (25)
wl = ut — y(x?) (26)

where the only arbitrary functiop?, denoted now by, is assumed (because we are looking
for WETS) to depend on/ andu® (x¥).
The generator in the appropriate second-ojelespace

AP = A x Ay x Apg = A x {(u®, puiy pus)} X (WS, Puinis Pusxis Pusut))
explicitly reads

[ =&'9,, +n%0u + 10, (27)
where the coordinate®, n* andy are sought depending afi, u® and p.
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Table 1. Weak equivalence classification. The infinitesimal generators appearing in the table are
givenbyr'y = 9,1,T2 = 8,2—Cu'd,1—Cu®d,2,I's = £ x19,1+3,2—Cu'd,1—Cu®d,2— (- Py,
g = B(xY)d,2, Tp = D(xHd2 + D' (x1)d,, whereB(x1) and D(x?) are arbitrary functions of

Xl.

a(ut) y(x?) Infinitesimal generators
arbitrary arbitrary 'y, g

arbitrary yo =constant I'1,Cp,p

oo = constant yoexp(—Cx2) Ty, g, Ta

k(aauh)YV¥1, kg £0  yoexp(—Cx?) Ty, Tp, T3

The invariance conditions

T (s — (@@HuZ)y, + ulzp +u' pou’s)|2s; e = 0 (28)
I (u? — u' + ¥ (x2))] 25,26) = O (29)
lead to the system
szz - 7]51 =0 (30)
2wt =y () +n% —nt +y' (xHE2 =0 (31)
/(4,12
Ol”(btl)i’ll +O{,(M1)7711 _ M 1 =0 (32)
u a(ub)
_ 1,1 2 reo1y1 o' (uh) 1, ¢2 1yg2
n=20au )flulxz - P%'xz + 20 (u )ﬂxz + Pm’? +§x1 —a(u )Exzxz (33)
r¢y,1
262 — gL+ 2 (u )r)l (34)
X X (X(l/tl)
1,2 1 2 1 o' (uh) 1 2 1 1,1 2
e +u(y(x®) —u’) a(ul)n — 25+, —pup )t —y(x%) =0 (35)
pnt —ut(y (¢ —uhHp, — a@hnk . +nh =0 (36)
for the functions
gt=ttah 2 =820 D) nt = 't 2% uh)
7 = 2t x2, it i) = i, x2 w2, p).

From the analysis of the previous system the classes of weak equivalence arise. We summarize
them in table 1.

Note that a similar classification could also be performed with respect to only one of
the p#. In general, the choice of the functions to be classified depends on computational
convenience or on physical considerations.

4. Lie symmetries via WETSs

Starting from the weak equivalence classes found in the previous section, after observing that
the component§’ andn® of the infinitesimal WET generator do not dependgrone can

obtain Lie point symmetries of the system (1), (2) by using the procedure introduced in [12],
based on the following theorem.

Theorem 1. Let
I =&G5ub)a, +n* o5, ul)oe + nx* u?, p)a,
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Table 2. Symmetries obtained via WET. The infinitesimal generators appearing in the table
. -1
are defined asty = 9,1, X2 = 90,2, X3 = G0 + .2 — Culdn — Cud2, X4 =
D/
8,2 — Cutd, — Cu?d 2, Xp = B(x)d,2 andXp = D(xH)d2 + ZL5,0.

awh) y(x?) Q) Symmetry generators
arbitrary arbitrary arbitrary X1

arbitrary arbitrary b0 X1, Xp

arbitrary Y0 arbitrary X1, Xo

arbitrary Y0 b0 X1, X2, X3

arbitrary Y0 Pl +¢o, p1 A0 X1, Xp

ao Yoex(—Cx?)  ¢o X1, Xp, X3
k(kuhyYk yoexp(—Cx?)  gou? +r)t/h X1, X3

be an infinitesimal generator of a WET for the system (1), (2). The projectibn of
X = £ (5 uP)o, +n* (K, uP)de

in the (x', u*)-space is an infinitesimal symmetry generator if and only if the specializations
of the functionp are invariant with respect t&'.

Thus, accordingto the above theorem, we require the invariance of the additional restriction

p=¢wd 37)
under the action of the general infinitesimal gener&torhich leads to

L(p = ¢W?) p=pr) = 0 (38)
that is

up —¢'w@hn* =0. (39)

Specializingl™ for each equivalence class, we get the symmetry classification.
Let us consider, as an example, the class characterized:dy and y (x?) arbitrary.
Since, in this case (see table [)= c19,, + B(x')d,2, the condition (39) reads

¢ WHB(x) =0

which gives the following two cases.

Case 1.¢(«?) arbitrary function. The symmetry infinitesimal generator is
X = Claxl = 61X1 (40)

with ¢; arbitrary constant.

Case 2.¢(u?) = ¢o = constant. The symmetry infinitesimal generator is
X = 10,1 + B(xH)d,2 (41)

with B(x?) arbitrary function. The symmetry Lie algebra is infinite-dimensional and it is
spanned by

X1 and Xg = B(x1)d,e.

The other cases can be analysed in a similar way. We summarize the results of the
symmetry classification obtained from the WETSs in table 2.
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Remark 1. The principal Lie algebrd.» of the symmetry group, that is the algebra of the
symmetry group admitted for each functional form of the arbitrary functians), y (x2) and
¢ (u?), is generated by 1, the time translation.

Remark 2. If the search for symmetries is performed via CETs [2, 13] one obtains fewer
symmetries than those obtained by using the WETs. In fact, as shown in [1], in the case
y = constant, by employing the CETs only the cadse= constant is recovered and the
corresponding symmetry Lie algebra becomes finite-dimensional.

5. A class of solutions in cases of physical interest

In this section we apply the results of the previous sections by considering a case of particular
physical interest described by means of a system of PDEs of the type (1), (2): the DDM for
the charge transport in semiconductors.

The DDM, obtained starting from the transport equation for electrons in a semiconductor
crystal lattice by means of a Hilbert expansion, is represented by the balance equation for the
charge density, coupled with the Poisson equation for the electric potential (see [17-19]).

In the unipolar version (only the motion of the electrons is considered while the motion
of the holes is neglected) it reads

on = 0y (@dyn — nv(E)) (42)
0E=n—yx) (43)

with n, v, E andy (x) representing the scaled electron number density, velocity, electric field
and doping profile, respectively.

Usually equation (43) is substituted by the equation for the electric potential, but for one-
dimensional problems the algebra is simplified by considering the equation for the electric
field.

The diffusion coefficientx may depend om and E. In this paper we assume that
depends only on. The general case will be considered in a forthcoming paper.

The previous system falls into the class (1), (2) settifig= t, x> = x, u* = n and
u>=E.

In order to close the system (42), (43), arelation betweand E must be assigned. This
depends on the type of semiconductor and it is obtained on the basis of asymptotic expansions
or fittings of experimental data or Monte Carlo simulations. In figure 1 we show the typical
behaviour of the velocity versus the electric field for Si and GaAs.

Here we shall restrict ourselves to the case

¢ = $E + o o = constant y = constant

A comparison with figure 1 shows that such a relation is a good approximation for a low electric
field.

Forthis choice o, « andy the symmetries of the resulting system (42), (43) are generated
by X; andX . The caseD(x') = constant leads to invariant solutions of the form of travelling
waves, which have been analysed to study the Gunn effects in GaAs semiconductors [18].

Here we shall consider the caBex?) # 0. Without loss of generality, the scaled doping
is put equal to one and we denote the length of the devide by

We look for solutions which are invariant with respect to

D'(1)

1

X =c10, + D(t)0, + oE.
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1

0.9

0.8

velocity (arbitrary units)
o
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L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
electric field (arbitrary units)

0 I I I

Figure 1. Drift velocity versus electric field in arbitrary units for silicon (Si) and gallium arsenide
(GaAs).

From the characteristic equations
dt dx ¢1dE
a D@ D@
the invariant basis of the symmetry group is obtained:

I = R(t) — c1x
Iz:n
R'(t
L—E— ()
11

with R(t) = [ D(r) dr.
Then the invariant solutions have the form

n=U(o)
R'(t)

E = V(o).
c1¢1 +Vie)

wheres = I;.
After substituting into the system (42), (43), we get tbducedsystem

aclU” + ¢ U'V + U’ +¢1V'U =0 (44)
—aV =U-1 (45)

where primes denote derivatives with respect to
Equation (44) has the first integral

acrU' + ¢ UV + U = kg = constant
Then, by using equation (45), a single second-order differential equation is obtained:
a2V + (1= e1V')($1V + o) = ko.
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By introducing the transformation

W =@V +eo
and by setting; = 1, one gets
aW” + WW' — (W + ko) = 0. (46)
For ko = 0, the general solution of (46) is given in an implicit form:
o —0g= /'1(6) |:¢1 +¢1L (i exp(wﬂ_l dr 47
n(o0) # 2¢1

wherec is an arbitrary constant andis the Lambert function, implicitly defined by

L(&)exp(L(¢)) =¢.

Note that the previous solution solves the system (42), (43) with the following boundary
conditions depending on an arbitrary function of time:

n(0,t) = U(R(1)) n(l,t)y=UR®) =) E©,1) = R(t) + V(R(®)).

6. Conclusions

In this paper Lie symmetries for a class of a drift—diffusion system have been found by
following a different procedure from the direct Lie infinitesimal method. Even if this approach
does not guarantee obtaining complete symmetry classification, it provides a systematic way
for obtaining wide classes of symmetries when arbitrary functions appear and the Lie direct
infinitesimal criterion becomes too involved to be successfully applied.

The followed method is based on the weak equivalence classification already introduced
in [10-12]. Here we improve the results of those papers by generalizing the suggestion
presented in [13, 14], where all the coordinates of the infinitesimal generators were sought
depending also on the arbitrary functions. The corresponding prolongation formulae of any
order are given in the appendix.

Finally, as an application of the results of the classification, a class of solutions in the case
of charge transport in semiconductors is obtained. We stress that the functional form of the
invariant base allows us to deal with boundary conditions containing an arbitrary function of
time.
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Appendix. Prolongation formulae for equivalence transformations

Let us consider the transformation (7)—(9).
In order to get the prolongation formulae of the infinitesimal generators of arbitrary order

P =10+ | e +o), (48)

o 0pa
i1...0p win ay...an " Pay..apeg
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related to such a transformation in therder augmented jet space
A" =Ax A3 x---x A,

we consider separately the componentE oélative to the partial derivatives of the dependent
functionsu§ and the components bfrelative to the partial derivatives of the arbitrary functions

A

Pe Firstly, in order to determine the componeqfs, , the variables* andp4 are sought as
u® = u*(x’) and pt = pAxd, uf (xN).

Therefore, from the transformation (7)—(9) it follows that
X =% (xh.

If we denote the total derivative with respectitbby D¢, and the total derivative with respect

tox’ by 5;, from the transformation rule
DS = (D{x*) (D)

and the infinitesimal form of the transformations (7)—(9)

k= xk +£§k(xi, ub, pA) + 0(¢)

=u+en*(x',uf, p*) +o(e)

ui=uj+ 8{_;"(xi, uf, p™) +o(e)

formula (12) is easly obtained.

More generally, by induction the recursive relations are proved by the standard procedure:

i = D5 iy — u?;...i,l,lkDie,lék' (49)

Now, in order to find the components’ dpa, WE consider® andu® as independent functions
and thep” are sought as

=l

LS

p* = prt uh).
Therefore, from the transformations (7)—(9)
74 =7(").
By considering the relation
D,p* = (DZ)pi
and by taking into account the infinitesimal form of the transformations for the partial
derivatives ofp*,
Py, = Py, ¥ 600y g, +0(E)

we get formula (13).
Proceeding by induction we suppose that

A e A A ne b
walma,l_l - Dan_l(a)al...an_z) - pal...a”_gb a”_lv .
Then, from the relation
ne —A _ /e =h\—=A
Dan Pay.ay s = (Dduz )pﬁal...ianflf]’

written for the corresponding infinitesimal transformation

N A A N b b A A
D;n (paluan—l + Ea)al---an—l + 0(8)) = (Dsn (Z tevt + 0(8)))(pa1...an_1b + 8wa1,,,a,,_1b + 0(8))

it follows that

A ne A A ne b
wal...a,, = Da,, (a)alu.a,,,l) - pal...a,,,lbDa,,v . (50)

We summarize the previous results in the following theorem.
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Theorem 2. Let us consider the equivalence transformation (7)—(9). The prolongation of
order n of[" is given by (48) witlt* . andwjjlman given by (49) and (50).

i1...0n

The prolongation formulae obtained above trivially extend to transformations with an

arbitrary number of dependent and independent variables and arbitrary functions.
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